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What is Bacteriophage (Phage)?

» Virus taking prokaryotes as host

* Double stranded DNA, single stranded DNA, RNA (3k-
500kbp)

» lytic phage vs. temperate phage




Morphology of Bacteriophage
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Life Cycle of Bacteriophage

L ytic Cycle Infection
* Nucleic acid exists as separate

* Destruction of infected host -
- Eg. Phage T4

® Lysis *, Lysogeny
Lysogenic Cycle

L 4
: L , Induction
* Integration of nuclei acid into host’s Q 4 mmma e@

Phage
Lambda

@

-S>

genome to generate prophages Lysogen
* Lysogens
* Induction to lytic growth
 Eg. Phage Lambda Golding, 1., Decision making in living cells: lessons from a

simple system. Annu Rev Biophys, 2011. 40: p. 63-80.
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Genome Structure

Mosaicism

* Diversity

« Horizontal gene transfer
(HGT)

* QOccasionally occur

* lllegitimate recombination
between short conserved
sequences.

It lays a foundation for
frequent evolution!!
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Horizontal Gene Transfer (HGT) in Evolution

HGT is the movement of genetic
material between multicellular
organisms, and it is an important factor
in the evolution of many organisms.
* QOrganelle to nuclear genome

» Bacteria to fungi
 Endosymbiont to insects

* QOrganelle to organelle

* Virus to plant

* Virus to bacteria

sSo on...

Bacteria

Common ancestral commmunity
of primitive cells

From Barth F. Smets.
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Bacteria—Phage Antagonistic Coevolution (AC)

Gut bacteria: Positive impact of within-host AC
* 90% are members of _ _ S
e Finmicutes and e Higher microbial diversity
Bacteroidetes phyla * Niche exclusion
* Remaining members belong  Bacterial Attenuation
to Proteobacteria,  Adaptive immunity
Actinobacteria,  Enhanced metabolic function
Fusobacteria and
Verrucomicrobia phyla

Gut phages: Negative impact of within-host AC

* Mostly double-stranded and
single-stranded DNA phages
* Myoviridae, Podoviridae, Siphoviridae

e Altered microbiota
* Altered bacterial metabolic function

and Microviridae * Increased virulence
e Infect members of the Firmicutes, * Inflammation
Bacteroidetes, Proteobacteria and e Intestinal disease
Ens. [ o duonanten: Scanlan, P. D. Bacteria-Bacteriophage Coevolution in the Human Gut
1 ® . 2 2 canlan, . . bacteria-bacteriopnage coevoliution In the riuman Gut.
151?55:!1‘ MOStly mteglated e ophages Implications for Microbial Diversity and Functionality. Trends Microbiol 25,

614-623, doi:10.1016/j.tim.2017.02.012 (2017).



Gut Phages and Intestinal Diseases

The potential role of phages in qut °* Bacteriophages control the bacteria population

in the human gut and influence the bacterial

Regulation of the bacterial population

_ diversity and metabolism, which may cause

some diseases.

Anti-inflammatory action

> Increase in the richness of Caudovirales

phages is related to IBD and Crohn’s

Regulation of local immunity (immunomodulation)

disease.

_ » Lysis of bacteria leads the release of
Probiotic activities
proteins, lipids, which induce intestinal

Lusiak-Szelachowska, M., Weber-Dabrowska, B., Jonczyk-Matysiak, E.,

Waijcigchowska; R.=& Gorski, A. Bacteriophages in the gastrointestinal tract 1 1

an Euml;cﬁnprm@ﬂf&‘zfé 9, 44, doi:10.1186/s13099-017-0196-7 ! nﬂam matl on.
(2012
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: ; LETTERS
mleOblOlOgy PUBLISHED: 10 JULY 2017 | VOLUME: 2 | ARTICLE NUMBER: 17112

Bacteriophage evolution differs by host, lifestyle

and genome

Travis N. Mavrich and Graham F. Hatfull*

NO universal genetic marker for identifying
phages, which makes the issue complicated !!
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Two Different Evolutionary Patterns

Comparisons between genomes reveal

LR two distinct evolutionary patterns.
P » Gene content dissimilarity increases
= more quickly as nucleotide distance

grows
» Gene content dissimilarity is
proportional to nucleotide distance

Gene content dissimilarity

HGCF=high gene content flux

Hecr/~

Ll e LGCF=low gene content flux
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0.0 . 0.2 0.3 . 050 12 1500
Nucleotide distance Frequency
(x10%)

EBRPNKREBEEBER
Faculty of Medicine

The Chinese University of Hong Kong




Life Style Determines the Evolution Mode

o Lytic—Lytic Temperate-Temperate
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» Lytic phages lie within the LGCF mode (94%)
» Temperate phages segregate into both the HGCF (43%) and LGCF (57%)
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Host Phyla Influence the Evolutionary Distribution

Actinobacteria
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Actinobacteriophage
» Both lytic phages and temperate
phages infect the actinobacteria

» Phages infecting actinobacteria lie
within both HGCF and LGCF

Lytic Temperate

e e

T

LGCF mHGCF mMixed ' Unknown



Other Host Phyla ; C e ) e P )
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Clusters in Actinobacteria Phylum Actinobacteria
Differ in Evolution Mode ’ C e T
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Frequent HGT Giv
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Genome Determines the Evolution Mode

The evolution of phages depends on the

cluster classification.

Eg. temperate Mycobacterium Cluster F phages evolve
exclusively in HGCF mode, whereas temperate
Mycobacterium Cluster K exclusively evolve in the LGCF

mode.
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Summary

Although the biological mechanisms that cause the two
evolutionary mode are unclear, the two mode have important
biological implications.

» The bifurcation of evolutionary modes by host, environment, lifestyle and
genome account for phage genome mosaicism and evolution.

» The traits of many temperate phages that contribute to host physiology,
virulence and viral defence may fuel the HGCF mode.

» Some other factors, eg. Variations in host evolution, differential access
to the common gene pool in different environments, and the roles of
temperate phages at different microbial densities, are expected to
contribute to these evolutionary mode.
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Our Future — Phage therapy

DISEASED RECOVERED
PATIENT PATIENT
. ‘ Partial .
Fecal Micro. Trans. establishment of - High number of clinical trials
donor's
Donor whole Microbial microbiota - Highly succesful in C. difficile
HEALTHY microbiota cells infection treatment

—ﬁ

DONOR

transplantation Viruses
‘ / Ciner
Fecal

microbiota
i prepartion

DISEASED RECOVERED

PATIENT PATIENT

0.45um

filtration . .

- Variable success rate in other
diseases

Partial
establishment of
donor's viral
community

- Pilot study in C. difficle infection

. patients
Viruses

Donor viral Other"*

fraction . <0.45um
transplantation

- High succes in pilot study

- Additional clinical studies needed
Fecal Phage Trans.

ERhYABERE Manrique, P., Dills, M. & Young, M. J. The Human Gut Phage
fhagyltyuqf M?SICIKne Community and Its Implications for Health and Disease.
T i Viruses 9, doi:10.3390/v9060141 (2017)
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